*127_002_EC_ECDSA

Atsiprasau, kad dél techniniy nesklandumy I-oji paskaita nebuvo jrasyta, todél pateiktas ankstesniy mety jrasas angly kalba.

Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on

the algebraic structure of elliptic curves over finite fields.

ECC requires smaller keys compared to non-ECC cryptography to provide equivalent security.
For example, to achieve the same security ensured by ECC having private key of 256 bit length,
it is required to use over 3000 bit private key length for RSA cryptosystem and others.

Elliptic curves are applicable for key agreement, digital signatures, pseudo-random
generators and other tasks.

Indirectly, they can be used for encryption by combining the key agreement with a
symmetric encryption scheme.

Elliptic Curve Digital Signature Algorithm - Bitcoin Wiki (ECDSA)
https://en.bitcoin.it/wiki/Elliptic Curve Digital Signature AlgorithmFeb 10, 2015
Elliptic Curve Digital Signature Algorithm or ECDSA is a cryptographic
algorithm used by Bitcoin, Ethereum and other blockchain methods to ensure
that funds can only be spent by their owner.
https://en.wikipedia.org/wiki/Elliptic-curve cryptography

Finite Field denoted by Fp (or rarely Z,), when: p is prime.

Fo={0, 1,2, 3, ..., p-1}; +mod p, “mod p, *mod p, -mod p-
Cyclic Group: Zp* = {1, 2, 3, ..., p-1}; *mod p, -mod p- p=11
For example, if p=11, then one of the generetors is g=2. Xa=¢&

The main function used in cryptography was Discrete Exponent Function - DEF:
DEF(x) =g*mod p = a.

x 0 1 2 3 4 5 6 7 8 9 40
2modp 1 2 4 8 5 10 9 7 3 6 4
Discrete Exponent Function - DEF4(x)=g* mod p xeZio aeZi”
XisinZp1=2Zw = {0,1,2,...,9}; 0 1
DEF(x) isin Zp* =Z11*={1,2, 3, ..., 10};
DEF: Zp1— Zp*. 1 2
Fermat theorem: if p is prime, then for any z: z°-'=1 mod p. 2 4
If g is a generator in Zp* then DEF is 1-to-1 mapping. 3 3
4 5
5 10
6 9
7 7
8 3
9 6
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https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Elliptic_curve
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https://en.wikipedia.org/wiki/Encryption
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_AlgorithmFeb
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

Multiplicative Group Z,"

Additive Group Zy1*

Z,°={1,2,3, ..., p-1}

Zp1*=10,1,2,3, ..., p-2}

Operation: multiplication mod p

Operation: addition mod (p-1)

Neutral element is 1.

Neutral element is O.

Generator ¢: Z,"={ ¢'; i=0,1,2, ..., p-2}
Two criterions to find g when p is strong
prime.

g"#1 mod p if n<p.

Generator g: Zp1*={i*g; i=0,1, 2,...,p-2}
E.g. 0=1.

(p-1)+0=0 mod (p-1) and

neg#0 mod (p-1) if 0<n<p-2.

Modular exponent: t=gX mod p
t=gegege ...g mod p; k—times.

Modular multiplication: t=keg mod p-1
t= g+g+g+ ...+g mod p-1; k—times.

p=11,p-1=10
*mod p

Z11*={1,2, ..., 10}
|Z11*|=10, g=2.
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p=11,p-1=10
*+mod (p-1)

Z10*={0, 1,2, ..., 9}
|Z10*=10; g=1.

Xel
mod 10
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Coordinate systems XQOY in subsequent examples are defined in the plane of real numbers.
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Elliptic curve ha a property that if line crosses two points, then there is a third crossing point in the curve.

Points in the plane or plane curve we denote by the capital letters, e.g. A, G, P, Q, etc.
Numbers-scalars we denote by the lowercase letters, e.g., a, g, X, Y, z, etc.

Addition of points P and Qin EC: PHQ=T
P(xp,yp) + Q(xq,Ya) = T(xr,y7)
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T=P+Q

R+ =24

G+G =2&

5-5 mpd 10 =0

F0 vwwdt0=7

Whou z s g2, =z~ 2%%¢ _» IZ[ = 256 417< -

Doyhling of povnts allows efjectively comprrte point A=z 7
3

8¢ = 2 &

Y 4

£
[

SIXV-X NO 1D31434

Adoé):'sr'oow:sm

A

ECDSA animacija

REFLECTIPN X-AXIS

B
()

<Y

*® 5

A

¥

T-T =,0 —=T+(-T)=0=co
T+a0 =T

A= g" poidp

y2=§¢§4x+2

Signing and Verifying Ethereum Signatures — Yos Riady - Software Craftsman

https://medium.com/coinmonks/elliptic-curve-cryptography-6de8fc748b8b
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For current cryptographic purposes, an elliptic curve is a plane curve over a finite field
Fo={0, 1, 2, 3, ..., p-1}, (rather than the real numbers) p-is prime.
Which consists of the points satisfying the equation over Fp

y2=x3+ax+b mod p
along with a distinguished point at infinity, denoted by 0 (o).
Finite field is an algebraic structure, where 4 algebraic operations: +mod p, “mod p, mod p; :mod p
are defined except the division by 0 excluded.


https://en.wikipedia.org/wiki/Plane_curve
https://en.wikipedia.org/wiki/Point_at_infinity
https://yos.io/2018/11/16/ethereum-signatures/
https://medium.com/coinmonks/elliptic-curve-cryptography-6de8fc748b8b

Elliptic Curve Group (ECG)

Number of points N of Elliptic Curve with coordinates (X, y) is an order of ECG.

Addition operation | of points in ECG: let points P(xp,yr) and Q(Xq,Yyq) are in EC with coordinates
(xp,yp) and (Xo,Yyq) then P B Q = T with coordinates (xt,yT) in EC.

Neutral element is group zero 0 at the infinity (co) of [XOY] plane.
Multiplication of any EC point G by scalar z: T=z*G; T=CHG BH G B ...H G; z-times.
Generator—Base Point G: ECG={ i*G; i=1,2,...,N}; N*G=0 and q+*G=#0 if q<N.

EC Homomorphism

ECHom (L, X) = xX* & :W

X —Aiymes
DEF : g  podp = a;  Drr(x+z)madp= DEF(x) DEF(Y) mod p
Q/H%mm/}ﬁ = gxa ggmw/fo
Ecper: x#& = A= (%, 44);
ECPEF(x+ Q)% ) = ECDEF(x* &) H gcDEF (Y ¥6) = T
‘ P & R = 7

Elliptic Curve Cryptosystem - ECC

ElGamal Cryptosystem (CS) Elliptic Curve Cryptosystem (CS)
PP=(strongprime p, generator g); PP=(EC secp256k; BasePoint-Generator G; prime p; param. a, b);
p=255996887; g=22; Parameters a, b defines EC equation y?=x3+ax+b mod p over Fp,.
Prk=x; PrKk ecc=z;
>> x=randi(p-1). >> z=randi(p-1).

Pu K:a:g"mod pP. PuKgecc=A=z*G.
Alice A: x=1055098; -=210649132; Alice A: z=1l; A=(Xa, Yr);

Let us consider abstract EC defined in XOY and expressed by the equation:

y2=x3+ax + b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.

y = +Vy?mod p.
Notice that from y? we obtain 2 points in EC, namely y and -y no matter computations are performed
with integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC.
Since all arithmetic operations are computed mod p then according to the definition of negative points
in Fp points y and -y must satisfy the condition

y+(-y) =0 mod p.
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Then evidently

y?=(-y)*mod p.

For example:

2mod11=9 -2 mpd M = G oAt

22mod11=4 & 9?mod11=4 (42 ¢ -2)) vl 77 = z+9a ) vrrad A1 =17 At =0
>>mod(972,11)

ans=4

The positive and negative coordinates y and -y in EC in the real numbers plane XOY are presented in Fig.
The positive and negative numbers for p=11 are presented in table .

YA

y mod 11 (-y) mod 11

1 odd even -1=10

2 even odd -2=9

3 odd even -3=8

4 even odd -4=7

) "x 5 odd even -5=6
6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

l 9 odd even -9=2
10 even odd -10=1

Notice that performing operations mod p if y is odd then -y is even and vice versa.

This property allows us to reduce bit representation of PuKecc=A=z*G =(Xa, Ya);

In normal representation of PuKecc it is needed to store 2 coordinates (Xa, ya) every of them having 256 bits.
For PuKecc itis required to assign 512 bits in total.

Instead of that we can store only xa coordinate with an additional information either coordinate yx is odd or
even.

The even coordinate ya is encoded by prefix 02 and odd coordinate yx is encoded by prefix 03.

It is a compressed form of PuKecc.

If PuKecc is presented in uncompressed form than it is encoded by prefix 04.

Imagine, for example, that having generator G we are computing PuKgcc=A=z* G =(Xa, ya) When z=8.
Please ignore that after this explanation since it is crasy to use such a small z. It is a gift for adversary

To provide a search procedure.

Then PuKecc is represented by point 8 G as depicted in Fig. So we obtain a concrete point in EC being either
even or odd.

The coordinate ya of this point can be computed by having only coordinate x using formulas presented above
and having prefix either 02 or 03.
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EC: y?=x3+ax+b mod p

Let we computed PuKecc=A=(Xx, y2)=8G.

Then (ya)? = (xa)3+a(xa)+b mod p is computed.

By extracting square root from (ya)? we obtain 2 points:

8@ and -8G with coordinates (Xa, ya) and( Xa, -ya).

According to the property of arithmetics of integers mod p

either ya is even and -ya is odd or yx is odd and -ya is even.
vX The reason is that ya+(-y»)=0 mod p as in the example

above when p=11 and that there is a symmetry of EC with

respect to x axis..

Then we can compress PuKecc representation with 2

coordinates (Xa, ya) by representing it with 1coordinate Xa

and adding prefix either 02 if ya is even or 03 if ya is odd.

A

Let us consider abstract EC defined in XOY and expressed by the equation:

y2=x3+ax+ b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.

y = +Vy?mod p.
Notice that from y? we obtain 2 points in EC, namely y and -y no matter computations are performed
with integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC.
Since all arithmetic operations are computed mod p then according to the definition of negative points
in Fp points y and -y must satisfy the condition Fer = {0, A2, -~y pA Y

_ y+(-y) =0 mod p. # vaodp ;& dep

Then evidently

y?=(-y)*mod p.
For example:

> mod 11 = 9 2+C’2) wmeod =2+ 9 med 41 = 21 gl =0

22mod11=4 & 92mod11=4
>>mod(972,11)
ans=4
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Figure 3. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17
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Key generation

1.Install Python 3.9.1.

2.Launch script Packages for joining a libraries.

3.Launch file ECC.

4.If window is escaping, then open hiden windows
in icon near the Start icon.

[# Packages

[# EcC

Documents » 500 SOFTAS 2023 » Python 391 » 111.ECDSA 2023.09
Name Date modified Type S22 p)./thon
Please input
Archyvas
I 111.ECDSAzip
App_PriChx
App_Puk bt
App_Signature bt
A EcCpy
Instrukcija.txt
P Packages.py

it looks like a pattem of
to that of an ellipti

1 KB

Python File

GKB

:06 Python File

” C:\Users\Eligijus\AppData\Local\Programs\Python\Python311\python.exe

app

required command:

Generate new ECC private and public keys
Export private and public keys

Export private key

Export public key

Load private key

Load data file

Sign loaded file

Load public key

Verify signature

Export signature

Load signature

Draw secp256kl graph in real numbers
Draw secp256kl graph over finite field

exit/e - Exit app
[Input command:
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Elliptic Curve Digital Signature Algorithm - ECDSA
ECDA Public Parameters: PP = (EC, G, p), G=(xg, ¥s); EIGamal CS Public Parameters: PP = (p, g)
1<xs<n, 1<ys<n.
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p;
In|=|p|=256 bits.
PrKa=z <-- randi; z< n, max|z|<=256 bits.
PuK,=z*G=A=(x4, ya); max|A|=2256=512 bits.

Signature creation for message M
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

1. h = H(M)=SHA256(M);

2. 1 <-- randi; |i|< 256 bits; >> gcd(i,p)=1 --> = | such that it mod p exists.

3. R= iBG = if(xc, yo) = (Xr, YR);

4. r =Xxr mod p;

5.s=(h+ze<r)iltmod p;|s|< 256 bits; // Since i satisfies the condition that gcd(i,p)=1, then exists it mod p.

I >>1_ml=mulinv(i,p) % in Octave 6

6. Sign(PrKecc=z, PP, h) =6 =(r, 5)

Signature vrification: Ver(PuK=A, 6, h)

1. Calculate us =hestmodpandu, =r st modp

2. Calculate the curve point V = u:G + uEA=V(xv, yv)
3. The signature is valid if R=V; r=xy=xgr mod p.

Schnorr Signature

ECDSA ElGamal Signature
h = H(m); h =H(m);
I <randi; I €randi; ged(i, p-1)=1

Compute it mod p

Compute it mod (p-1)

h =H(m);

i <randi;

R=i* =i*(v~ v~ = (v~ \ux)-
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I <randi; I <randi; ged(i, p-1)=1 i <randi:

Compute it mod p Compute it mod (p-1)

R =i*G =i*(xc, Yc) = (X, YR); r=g'mod p; r=g' mod p;

r =xgr mod p; |i|< 256 bits;

s=(h+zer)i-t mod p; |s|< 256 bits; s=(h-xer)i-t mod (p-1); s=(i+x=h) mod (p-1);

s1=(h+zer)i mod p; h=xr+is mod (p-1).

Sign(PrKecc=z, h) = (r, s) = 6; Sign(PrK=x, h) = (r, s) = 6; Sign(PrK=x, h) = (r, s) = 6;

ECDSA Verification ElGamal Signature Verification Schnorr Signature Verification

Compute ui=hes* mod p and Compute: ui= g"mod p; Compute: ui=g®mod p.
uz=rsst mod p; and U= ar*mod p and up= ra" mod p

Compute R = u:8G + u®A = (xg, yr); Signature is valid if: ui= u, Signature is valid if: ui= uy

The signature is valid if r=xgr mod p.

Let u, v are integers < p.
Property 1: (u + v)*P = u*xP /@ v+P replacementto -->  (u+Vv)P =uP + VvP
Property 2: (u)*(P B Q) =u*P Hu*Q replacementto-->  u(P + Q) =uP +uQ

Important identity used e.g. in Ring Signature:
(t-zc)*G+cxA = txG-zexG+exA = t+G-c(z+G)+c*A = txG-cxA+cxA = tG mod p.

b\ %) (a+c" -z = U<

Correctness:

R=U1*G + Uz*A

From the definition of the Public Key A=z*G we have:

R=u,*G + (Uz‘Z)*G

Because EC scalar multiplication distributes over addition we have:

R=(U1 + Uz'Z)*G

Expanding the definition of u; and u, from verification steps we have:

R=(hes + reslez)*G

Collecting the common term s we have:

R=[(h + rez)es|*G

Expanding the definition of s from signature creation we have:

R=[(h + rez)e(h + rez)lej]*G=i*G.

Since the inverse of an inverse is the original element, and the product of an element's
inverse and the element is the identity, we are left with R = i*G = (xg, yg); r=xs.

PrK ecc=z < n < 2%%;, PuK ecc=A=(ax, ay); 2?56
|PrK ecc=z|=256 bits; |PuK gcc=A]=512 bits.
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